On a sun-soaked patch of gravel in Kakaako a small group of entrepreneurs are pioneering technology that uses solar energy to turn salt water into fresh water.
The work being done by Renewable Water Technologies is early in the research and development process, but the company’s founders say it has the potential to be scaled up for commercial applications.
Much of seawater desalination done in Hawaii and elsewhere is accomplished through reverse osmosis, a relatively energy-intensive process that removes the salt and other solids from water by forcing it through a membrane under high pressure.
By comparison, RWT’s technology uses solar thermal collectors to heat the water and remove the salt through a humidification-dehumidification (HDH) process. The company’s pilot project features solar panels similar to those found in home rooftop water heating systems. The company is installing photovoltaic panels that will power the low-wattage pumps needed to move the water through the system.
"It is designed to be modularized and deployable," said John Chock, one of the company’s principals. "That’s the way the business will grow. Our business model is to produce small-scale, solar-powered desalination systems."
Potential customers include the military and oceanfront hotels, Chock said.
RWT will hold an open house at 11 a.m. Thursday at the Kakaako facility, 40 Ahui St.
Chock teamed up with University of Hawaii School of Engineering professor Weilin Qu and his former student Riley McGivern to form RWT in late 2010. The company’s technology is adapted from work Qu and McGivern did in a UH laboratory. RWT placed second in the 2011 UH Business Plan Competition.
RWT’s technology is particularly attractive in a place like Hawaii, where there are limits to the amount of fresh water that can be pumped from aquifers and high energy costs make other forms of desalination expensive, Qu said.
The output of the Kakaako pilot project so far has been limited to a few gallons an hour as the water samples are tested to make sure the system is meeting its benchmarks, McGivern said.
The objective is to show that such a system can work in a real-world setting, said McGivern, who has a master’s degree in mechanical engineering from UH. "It’s a stand-alone system. A lot of this is proof of concept," said McGivern, 25.
RWT is being funded by the Hawaii Technology Development Venture, a project administered by the Pacific International Center for High Technology Research that receives funding from the Office of Naval Research. The site near the Children’s Discovery Center is being provided by the Hawaii Community Development Authority.
Qu received an initial $50,000 grant from the Hawaii Technology Development Venture in 2009 with renewable energy company Sopogy Inc. as his corporate partner. Based on success in the lab, RWT was formed and received $300,000 in funding under a contract with the Hawaii Technology Development Venture to do the Kakaako pilot project. Oceanit Laboratories Inc. is RWT’s partner under the contract.
Chock, the former head of the state-run Hawaii Strategic Development Corp., said RWT is an example of what new UH-Manoa Chancellor Tom Apple referred to when he emphasized the need to make a greater effort to maximize the school’s income potential.
"We have some very good technology coming out of university research that often doesn’t reach the commercial stage because the typical professor doesn’t have the necessary entrepreneurial skills," Chock said. Projects like RWT show that local research and development has the potential to be successfully commercialized, he said.
The University of Hawaii has not fared well in terms of generating licensing revenue from spending on research. UH received $256 million in research money in fiscal 2010 and took in $107,702 in licensing income, according to the latest data from the Association of University Technology Managers.
A 2010 report by the UH Office of Technology Transfer and Economic Development acknowledged the school’s shortcomings in generating revenue from its R&D efforts.
The report, prepared for UH President M.R.C. Greenwood, said "there is much room for improvement" within university’s technology transfer office, which was established in 1989 and reorganized in 2000.
Among the challenges facing the office are establishing new relationships between the school and outside investor groups and entrepreneurs, according to the report. Officials also must work to change the culture of the school by "hiring and supporting entrepreneurial faculty and rewarding their efforts to move promising scientific developments into broader use for the benefit of society," according to the report.